
JOURNAL OF COMPUTATIONAL PHYSIC.3 101, 176184 (1992)

General Algorithm for Two-Dimensional Totalistic Cellular Automata

FRANCO BAGNOLI

Dipartimento di Matematica Applicata, Universitci di Firenze, Firenre, Italy, and
INFN and INFM, Sezione di Firenze, Firenze, Italy

Departamento de Fisica, Facultad de Ciencias, UNAM, Apdo. Postal 70-542,045lO Mkxico D.F., Mixico

AND

STEFANO RUFFO

Dipartimento di Energetica, Universitri di Firenze, Firenze, Italy, and
INFN and INFM, Sezione di Firenze, Firenze, Italy

Received February 16, 1990; revised March 28, 1991

Multi-site coding techniques allow fast simulations of cellular
automata that are economical in the use of memory. In these techniques
the transition rule must be expressed using only bitwise operations. We
present an algorithm for the simulation of generic totalistic and outer
totalistic cellular automata which uses a multi-site coding technique.
The algorithm is based on the careful use of (a) improvements over
the canonical forms by using the exclusive-or operation, (b) optimal
storage of the configuration in the computer memory, and
(c) appropriate construction of stochastic rules. Items (b) and (c) of
the method can be also applied to non-totalistic automata in any
dimension. 0 1992 Academic Press, Inc.

1. INTRODUCTION

The study of cellular automata behavior, both of deter-
ministic and probabilistic ones, is a subject of great interest
nowadays [11. Cellular automata are dynamical systems in
which time, space, and dynamical variables are discrete. The
space is a (regular) lattice, and each site (cell) takes a value
in a discrete set. In this paper we restrict this set to (0, 1 },
i.e., we consider only Boolean cellular automata. All the
cells in the system evolve synchronously according to an
uniform short-ranged law. The law gives the future state of
a cell according to the present state of the cells belonging to
a certain neighborhood. In a square lattice a widely used
neighborhood is formed by the cell itself, the four nearest-
neighbor ones, and the four next-to-nearest ones. This is
often called the Moore neighborhood. It can also be divided
into an outer neighborhood, formed by the eight cells
surrounding the central one, and the cell itself.

Among the various automata, totalistic ones seem to
represent a subset of limited extension (in two dimensions
and with a Moore neighborhood there are 512 different
totalistic rules with respect to 2512 general rules) that retains
the complexity of the whole set [2]. The transition rule for
totalistic cellular automata depends only on the sum of the
cell values in the neighborhood. The class of totalistic rules
is equivalent to that of the rules symmetric in all the
arguments [3]. The transition rule for outer totalistic
cellular automata depends separately on the value of the cell
itself and on the sum of those in the neighborhood.
Examples of such rules are Conway’s Game of Life [4],
biased majority rules that simulate interface motions [S],
solidifications and aggregations models [6], and Ising
dynamics [7, 8, lo].

In studying the statistical properties of these automata,
long simulations of large arrays are often needed, requiring
both powerful computers and big memory storage. The
Multi-Site Coding technique (MSC) allows a gain in
memory requirements and in execution speed [9, lo]. The
main idea of MSC is to pack several variables into a single
memory word of the computer (a word can hold from 16 to
64 bits, depending on the machine) and to elaborate their
future value as a whole. In such a way a certain degree of
parallelism can be achieved even on a serial computer. The
drawback of this technique is how to implement a generic
transition rule.

Storing a cell value into a single word allows its easy
manipulation and the description of the rule with high-level
language, such as: if the sum of the neighbors is three, then... .

0021~9991/92 S5.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

176

TOTALISTIC CELLULAR AUTOMATA 177

Alternatively the cells values can be combined and used as
an address in a precompiled look-up table. On the other
hand MSC is fully exploited if the transition rule is
expressed by means of operations acting over the packed
variables as a whole. This can be achieved using the bitwise
operations NOT, AND, OR, and exclusive OR (XOR). The
starting point is the canonical disjunctive form built directly
from the truth table [111. The canonical form for totalistic
cellular automata contains a great number of operations.
The reduction of this form to a minimal one (in the sense of
the number of operations required) is not an easy task. In
fact the problem of finding the minimal form is believed to
be a NP one [121.

In this paper we discuss several aspects related to the
simulation of cellular automata using the MSC technique.
In Section 2 we present an algorithm that allows us to
construct a generic two-dimensional totalistic and outer
totalistic Boolean cellular automaton rule. The Boolean
expressions obtained in this way improve significantly the
canonical form. In Section 3 we discuss the problem of
optimal storage of the configuration in the computer
memory. The technique there exposed can be also applied to
non-totalistic and non-Boolean cellular automata in any
dimension. Section 4 briefly discusses the extension of the
method to probabilistic rules; once more the results can be
applied to the simulation of a generic stochastic cellular
automaton. The subsequent section presents benchmarks
among various implementations of the code and one
application to the Game of Life. Section 6 presents some
applications of these methods to physics, and the final
section contains some conclusions.

2. THE ALGORITHM

In the following xj,i indicates the spin (cell value) at the
site located at row j and column i in a square 2D lattice.
Spins can take the values 0 and 1, so each site variable can
be stored in a bit. Memory words are indicated with upper-
case letters, as W, and arrays of words by W,,. All the array
indices start from 0. The bits in a word are indicated with
lowercase letters, thus

where Nb is the number of bits in a word (16, 32, or 64).
Note that the order of the bits in a word is that required to
read them as a number in base 2 in the standard left to right
way.

The number of required words to store a row of the
configuration is denoted by NW and the number of sites in
a row by Ns. Then

Ns=Nb.Nw;

the number of rows required is indicated by Nr.

(2)

Given a site and its Moore neighborhood, the spin of the
center is usually denoted by c and the spins of the neighbors
by nw, n, ne, w, e, SW, s, se. The notation recalls north, west,
east, and south directions. In the previous notation c is x~,~,
nw is XI-1 ,-i, etc. Following Vichniac’s notation [7], we
write

h=nw+n+ne+w+e+sw+s+se

m=h+c.
(1)

Any totalistic evolution rule can be written as

9

c’(m) = C rk ’ mk
k=O

and any outer totalistic rule as

c’(h,c)= i hk.[~.rl,k+(l-~).rO,k].
k=O

(3)

In these expressions c’ is the updated value of the central
site, mk is 1 if m = k and 0 otherwise and similarly for h,,
with m and h given by (1). Thus only one term contributes
in the sums of Eqs. (2) and (3). The quantities rk and rC,k,
(c = 0, 1) take the value 0 or 1 and define the automaton
rule.

As mentioned earlier it is advantageous to use MSC. In
order to perform operations on all the bits in a word at once
we need to use only bitwise operations. In the following we
use the upper bar for the bit by bit negation, and the 0, A,
and V symbols, respectively, for the bitwise XOR, AND,
and OR operations. Let C denote a word that contains Nb
spin variables. For the moment it is not important what the
correspondence among the spins in C and the sites in the
lattice is, as long as it is one-to-one. With the neighbors nw,
n, ne, w, e, SW, s, se of each site stored in C, the neighbors
words NW, N, NE, W, E, SW, S, SE can be constructed.
Then, any totalistic rule may be written using MSC as

C’= t R, t\ M,,
k=O

(4)

and any outer totalistic rule as

c’= 0 H,A [CARl,k V c A &,,I, (5)
kc0

where R, and R,, are words whose bits are all equal to rk
and rr,ky respectively. The words Mk and Hk contain in the
ith bit (i= 0, Nb- 1) the values of mk and h, for the
neighborhood of the ith site packed in the word C.

178 BAGNOLI, RECHTMAN, AND RUFFO

The problem is now reduced to that of contructing the
quantities mk and h, using only Boolean operations out of
the spin c of the central site and of the spins IZW, se of the
neighbors. Then, as mentioned above, the same Boolean
expression may be applied in a bitwise fashion to
C, NW, SE. In what follows these expressions are con-
structed explicitly for totalistic rules and they are reported
in table I; the case of outer totalistic rules is similar, and the
corresponding expressions are summarized in Table II.

To simplify the notations let y,, y,, ys denote the
spins c, nw, se. If in a certain configuration (yO, y,, y,)

negations of all the spins will yield expressions for the other
mk with k = 4, 0. As an example, m, takes the value 1
only if all the spins are 1, while m, is 1 only if all the spins
are 0. Then

8
m9= A yi (6)

i=O

mo= i Y,.
i=O

For k = 8 we have

(7)

the sum of the spins is m, the sum of the negations of the
spins will be 9 - m. This means that if expressions are found
for mkr k = 5, 9, then the same formulas applied to the

m8 = v E A yl A y2 A y3 A y4 A y5 A y6 A y7 A y8,
cyclic

63)

m

TABLE I

Equivalent Configurations and Characteristic Functions for Totalistic Neighborhood

Independent conf. Code Characteristic function

9
8
I

111111111 511 Yo A YI A Y2 A Y, A Y, A Ys A Ye A Y, A Ys*
011111111 255 (Yo@Y,) A Y2 * Y, * Y, A Ys A Y, A YT A Ys
001111111 127
010111111 191
011011111 223 (Yo$Y,)A(Y~OY~)~Y~AYSAY~AY~~ Ys
011101111 239 (Yo~Y,)~Y~~(Y~~Y~)*YsAY~~ Y7’,‘Y8

Total (107/395): (Yo@Y,) A [(Y2@Y3) A Y4 ” Y2 A (.h@Y4)lA Y, A Ye A Y7 A YS

6 001011111 95
001101111 111
001111101 125
001111011 123
010101111 175
010110111 183
010111011 187 (Yo~Y,)A(Y~~Y~)~(Y~~Ys)AY~*Y~~Y~
001110111 119
000111111 63 (Yo~Y,)~(Y~~Y~)~(Y~~Ys)~Y~~Y~*YS
011011011 219 (YOQY,) A Y2 A (Y3QY4) A (YsQYd A Y7 A Ya

Total(161/1007): (Yo@Y,) A {[(Y2@Y3) A (Y4@Ys)" (Yz@Y~)A(Y~@Ys)~” Y6” Y2 A(Y3QY.t) A (Ys@Y6)} A Y7 A Y8

5 001010111 87
001011011 91
001011101 93
001100111 103
001101011 107
001101101 109
001110101 117
010101011 171
001001111 79
000011111 31
000101111 47
ooo110111 55
000111011 59
000111101 61 (Y,QY,)~(Y~QY~)A(Y~QY~)~(Y~QY~)*Ys

Total (170/1637): (Yo@Y,) A {(Y2@Y3) * [(Y4@Y5) A (Y6@Y7) ” (Y,@YL) A (Ys@Y,)l ” (Yz@Y,) A (Yj@Y,) A (Y4@Y7)) A Y8

Note. The (*) at the end of the characteristic function for m = 9 means that the sum (OR) over all the cyclic translations is unnecessary. Total expres-
sions are not reported for m = 9 and m = 8, where only one characteristic function is present. The numbers in brackets beside the total expressions are
the required operations with respect to the canonical form.

TOTALISTIC CELLULAR AUTOMATA 179

where the OR operation is taken over the possible nine
cyclic translations of the indices of the spins y,, y,, y8.
Each term in the sum contains only one negated spin.
Expression (8) may be rewritten as

m8= v (yO@yl) * Y2 * Y3 A Y4 A YS A Y6 A Y7 A Y8?
cyclic

(9)

where @ denotes the exclusive OR(XOR) operation. There
is some redundancy in the last espression, as a@ b =
L5 A b v a A 6, so that each term in the sum already contains
part of the subsequent term, but this saves one computer
operation per term.

The configurations with seven spin variables equal to 1
fall into four classes. The elements of each class are equiva-
lent under cyclic translations. Each class may be identified
by the configuration that has the minimum code when read
as a binary number. The equivalence classes and their code
are shown in Table I. In this case the expression

(YO@Y,) A (h@Y3) A Y4 * YS * Y6 A Y7 A Y8

is equal to 1 for the classes denoted by 127, 191, and 223
(eventually after a cyclic translation). The class 239 can be
represented by

(YO@Y,) A Y2 * (Y30y4) A YS A Y6 A Y7 A Y8.

Then

m7= V (Y,@Y,) A C(Y,@Y~) * y4 v y2 A (Y~OY,)I
cyclic

A YS * Y6 * Y7 A Y8. (10)

This expression contains a total of 107 Boolean opera-
tions, compared to the canonical form that contains 395.
These numbers are also reported in Table I.

The expressions for m6 and m5 are obtained in a similar
way and are shown in Table I. The efficiency of the algo-
rithm increases with the number of configurations involved.
The expressions for m6 contain 161 operations in com-
parison to the canonical form that contains 1007. For m5

the numbers are 170 and 1637, respectively. In order to

TABLE II

Equivalent Configurations and Characteristic Functions for Outer Totalistic Neighborhood

h Independent conf. Code Characteristic function

5

4 00101011 43
00101101 45
00110011 51
00110101 53
01010101 85 (YO@Yl) h (Y2@Y3) A (Y4@Y5) A (Y6@Y7)

00100111 39 (YO@Y,) h (YZ@h) * (Y4@Y6) h bS@Y7)

ooo01111 15
00010111 23
00011011 21
00011101 29 (YO@Yl) A (Y2@Ys) A (Ys@Y,) A (Y4Q3Y7)

Tota1(13WW (Yo@Yd * {(Yz@Yd A [(Y4cDYs) * (Y6@Y7) v (y4@y6) * (ys@Y7)1 v (YZ@YS) A (Y~@Y~) A (y4@Yy7)1

8
I
6

11111111 255 Yo A Yl A Y2 A Y3 A Y‘l A Ys A Y6 A Y7*
01111111 127 (Yo@Yd * Y2 * Y3 A Y4 A Ys * Y6 A Y7

00111111 63
01011111 9s
01101111 111 (YOCDY,) * (Y28YJ * Y4 A Y5 A Y6 A Y7
01110111 119 (Yo 8 Y,) A Y2 A (Y3 @ Y4) * Ys A Y67Y7

Total W/W: (Y,@Y~) A C(Y~CBY~) A Y, v y2 A (~~8.~~11 A YS A y6 A ~7

00101111 47
00110111 55
00111011 59
00111101 61
01010111 87
01011011 91 (YO@YI) h (Y2@Y3) * (Y4@Y5) A Y6 A Y7

00011111 31 (YO@Yl) A (Y20Y4) A (h@Y,) A Y6 h Y7

Total (96/615): (yO@h) A [(Y2@Y3) A (Y4@Ydv (YZ@Y4) * (h@Y5)l A Y6 A Y7

Note. The (*) at the end of the characteristic function for h = 8 means that the sum (OR) over all the cyclic translations is unnecessary. As in Table I
total expressions for h = 8 and h = 7 are not reported. The numbers in brackets beside the total expressions are the required operations with respect to
the canonical form.

180 BAGNOLI, RECHTMAN, AND RUFFO

achieve the maximum execution speed, the sum over the
cyclic translations in the expressions reported in Table I
should be explicitly developed.

In a general algorithm all the quantities M, have to be
generated, as the selection of the rule is performed by the
Rk. It is possible to save the task of generating WL, and m5
using the parity p of the sum m, given by

P=Y,oY,oY,oY,oY,oY,oY,oY,oY,; (11)

p is 0(1) if m is even (odd). Obviously

p=m,vm,vm,vm,vm,,

and since

mi h mj=O if i#j,

we get

m,=pAm,vm,vm,vm,. (12)

The expression for m4 may be obtained from the
condition

i) m,=pvji=l;
k=O

then

m4=ji~mm,vm,vm,vm,. (13)

The expressions (1 1), (12), and (13) imply only 19 opera-
tions, with respect to the 3274 of the canonical form and of
the 340 of the reduced form of Table I. In the actual writing
of the algorithm in a computer code one can further reduce
the number of operations by taking into account the
presence of common patterns in the expressions in Tables I
and II and observing that a @ b = a 0 6. In total the number
of operations required to implement a generic totalistic
automaton is about 600 bitwise operations per word.

Reasoning in a similar fashion, one may find compact
expressions for outer totalistic cellular automata. These are
presented in Table II.

3. IMPLEMENTING THE ALGORITHM

The full power of the algorithm is developed when applied
to full words. There are several ways in which one may assign
thespinsofthesitesxj,i(j=O ,..., Nr-1;i = 0, Ns - 1)
in the lattice to the words X,,(k = 0, NW - 1); however,
the task of building the neighborhood of the sites stored in
the word C= X,, must be as economical as possible. The
final goal is to have the values of the cells belonging to the

neighborhood of a cell stored in a certain position of the
word C in the corresponding bits of the words NW, SE.
This can be obtained without any shift operations by
assigning the first spin in a row to the first bit of the first
word, the second spin to the first bit of the second word, and
so on for the first NW spins. The previous operation is
repeated Nb times in order to store the first NW spins in the
first bits of the words containing the row, the following NW
spins in the second bits of the words, and so on. For a
generic row j we have

xj,O= IX,,(N~-IJ.N~,Y ...> Xj,2.Nw, Xj,Nnz> xi.01

Xj,1=IXj,(Nb--l).Nw+l,...rXj,2-Nw+l,X,,~w+~,X,,II

(14) . . .

xj,Nw- 1 =IXj,Nb.Nw--L,...,Xj,~.Nw--lrXj,2.N~~-l,Xj,Nwl~

For NW> 3 and apart from boundary conditions, the
spins of the neighbors of the sites in X,, are stored in the
corresponding bits of the words

In order to implement periodic boundary conditions on
the horizontal border, all the operations on the index j are to
be considered modulus the number of the rows Nr. Vertical
periodic boundary conditions are imposed by observing
that the west neighbors of the sites in the first word Xj,,o are
contained in the last word X, Nw _ I circularly shifted one bit
to the left, and the east neighbors of the spins in X,, Nw ~ 1 are
in X,, circularly shifted one bit to the right. This storage
scheme can be used in any dimension and even for
non-Boolean automata such as lattice gases (see Section 6);
with a few modifications it can also be adapted to larger
neighborhoods.

4. PROBABILISTIC TOTALISTIC CELLULAR AUTOMATA

Probabilistic cellular automata may be implemented by
allowing real values between 0 and 1 for the coefficients rk
of Eq. (2) and interpreting c’ as the probability that the spin
of the central site assumes the value 1 at the next time step.
Then rk is the probability that this spin is 1 if m is equal to k.

These probabilistic concepts may be introduced in
the bitwise evolution rule (4) filling the bit masks R, with
bits having the value 1 with probability rk. A large number
Nm of samples of the words R,,, is constructed with

TOTALISTIC CELLULAR AUTOMATA 181

x = 0, Nm - 1. Then, given a random number x between
0 and Nm - 1, the evolution rule for the sites in a word C is
given by

C’= 0 R,,, A M,. (16)
k=O

In practice it is possible to reduce the number Nm of the
independent random masks by performing a random cir-
cular shift over Rk,+ before introducing it in Eq. (16). The
same arguments apply to outer totalistic cellular automata.
Once again, the use of random masks can easily be adapted
to other evolution rules. An advantage in using predefined
random masks is that the probability can be fixed with a
great precision, and correlations are further depressed by
shuffling the random masks.

5. PERFORMANCES

In order to obtain an accurate estimate of the time
required per site update, we propose an approximate
expression for the running time T of a program,

T=t,+ti.L+t,.L.N”, (17)

where L is the number of lattice sites, N, is the number of
global updates of the lattice, and t,, ti, t, are constants: t,
represents the loading time, which could also involve the
compilation time; t, is the time requested to initialize the
lattice and t, is the update time per site. The time needed to
implement the periodic boundary conditions is not con-
sidered, but the linearity of the law with respect to L with
fixed N, has been tested for lattice sizes ranging from
64 x 64 to 512 x 5 12 sites, over a variety of machines. The
quantity used to compare the performances of the various
implementations is the number v of sites updated in a
second, and it is obtained by

v= (18)

where AN, and At represent the differences in lattice
updates and in running time of two samples of the same
program on the same machine for different N,‘s. The
angular brackets represent the average over different
samples.

The computers used for the benchmarks were an
IBM PS/2 80 with a clock speed of 16 MHz (using DOS
operating system the words are 16 bits long); a SUN 3861‘
workstation at 25 MHz, a VAX 3580 (32 bits per word), an
HP 9000/840 (32 bits per word), and a CRAY I XMP (64
bits per word). All the programs were written in a high-level
language and in a clear style with many calls to subroutines

and no dirty tricks. Vectorialization on the CRAY was
explicitly avoided, since we were interested in testing the
gain obtained with the reduced rule on different machines.
The central loop containing the sum (OR) over the eight
cyclic translations of the indices was not explicitly
developed, and the variables x0, x1, xg were translated
by explicit assignment (temp =x0, x0 = x1, xs = temp).

In order to show the advantage represented by using the
algorithm described above with respect to the canonical
form, eight different programs were written using the C
language and run on the HP computer (Table III). The
table shows the differences in the number of spins updated
in a second, between the canonical expressions and our
algorithm in constructing all the quantities mk and hk. The
performances are reported for inline code and for a
structured call to a subroutine. Our algorithm is about
three times faster than the canonical form, depending on the
complexity of the calculation.

The algorithm may be applied to many interesting
models. The efficiency is discussed briefly in two cases:
Conway’s Game of Life [2], which is a classical testing
ground, and a general probabilistic outer totalistic rule. For
outer totalistic rules, and in particular for the Game of Life,
we should expect smaller improvements with respect to the
canonical form due to the simplicity of the rule (see
Table II). When not explicitly indicated, the following
programs were written in FORTRAN 77.

The Game of Life is a two-dimensional outer totalistic
cellular automaton whose evolution rule is given by

c’= 1

i

I if c=Oandh=3,
if c=landh=2or3, (18)

0 otherwise,

where h is the sum of the neighbors of the central cell xi, j as
defined in (1). It should be noted from expression (18) that
only m2 and m3 are required in order to calculate c’.

We wrote three different programs:

1. High-level, a traditional code with one spin per word
and the rule implemented with if... then... statements;

TABLE III

Number v of sites updated in a second in kHz (formula (18)) for
the construction of mk (totalistic) and hk (outer totalistic) using C
language on a HP 9000/840 computer

Program

Canonical
Reduced

Totalistic Outer totalistic

Subroutine Inline Subroutine Inline

83.0 172.0 177.8 338.6
301.6 441.8 447.1 659.5

182 BAGNOLI, RECHTMAN. AND RUFFO

TABLE IV

Number Y of sites updated in a second in kHz (formula (18))
for the Game of Life

Computer High-level Canonical Reduced

PS z/so 18.9 3.5 22.5
SUN 3861’ 32.8 50.4 174.5
VAX 8350 54.9 117.8 217.2

HP 9000/840 101.9 175.1 585.1
CRAY I XMP 391.3 3034.1 4551.1

2. Canonical, using MSC and the rule implemented via
the canonical disjunctive form;

3. Reduced, using MSC and the compact expressions
reported in Table II.

The values of v obtained running the three different
programs are reported in Table IV. The reduced program
always runs faster than the other two. We observe that when
the number of bits per word is small, as in the case of the
PS/2, the use of MSC does not necessarily imply better
performances. For computers with more bits per word the
gain of MSC increases, but still one gets significant
improvements using our algorithm.

Finally, we implemented a code for the simulation of a
general outer totalistic probabilistic rule. The results for v
are reported in Table V. The gain with respect to the
high-level program is less than above (apart the results
for the HP computer), even if with MSC only one random
number has to be extracted for every Nb spins. This is due
to the larger number of operations needed to generate all
the M, in (5) with respect to the Game of Life.

In order to evaluate the influence of the language used, a
program that implements a general outer totalistic
probabilistic rule was written in C language for the HP
computer. The update rate obtained was 257.2 kHz, which
is nearly 1.5 times the speed of the corresponding
FORTRAN program. This result cannot be generalized, but
it shows that several factors should contribute in order to
achieve the best performances.

A preliminary study of probabilistic mixtures of totalistic
automata has been undertaken. An example is the mixture

TABLE V

Number v of sites updated in a second in kHz (formula (18))
for a general probabilistic outer totalistic rule

Computer High-level Reduced

PS 2/80 9.1 9.5
SUN 3861’ 16.6 73.1

VAX 8350 41.4 93.1
HP 9000/840 15.2 176.17

CRAY I XMP 261.2 2239.3

dca

0.8

0 0.1 (
e

0.8 0 I.7 a

FIG. 1. Asymptotic density d, of live cells for a random mixture of the
Game of Life and its conjugation with probability E varying from 0 to 1 step
0.02. We plot the result of computer simulations (diamonds) and of mean
field approximation [141 (continous line). At E = 0, which corresponds to
the Game of Life, the asymptotic density is d, = 0.028.

of the Game of Life with its conjugate that assumes the
value 0(1), whereas the Game of Life takes the value l(0).
At any site the Life rule is applied with probability E and its
conjugate with probability 1 - E (0 < E < l), as described in
Section 4. In Fig. 1 the asymptotic density of live sites (ratio
of sites having spin equal to 1 to the total number of sites)
is shown as a function of E, together with a mean field
approximation [141. These simulations were carried out on
a 256 x 256 lattice. The graph shows 50 points, each being
the average over 10 simulations performed on the SUN 3861’
with a program written in C. The total CPU time was
roughly 36 h. The update speed was 161.6 kHz, which is
smaller than the value reported in Table IV due to the
loading time, the initialization time, and the (relatively
small) slowing down due to the calculation of the density
every 100 updates performed to monitor the relaxation of
the lattice. The algorithm here described was also used to
study the relaxation and the critical properties of the Game
of Life in Ref. [15].

6. SOME PHYSICAL APPLICATIONS

As a first physical example let us consider the simple
model of interface motion developed in Ref. [S], based on
a marginal majority deterministic rule. The central site c
assumes the value that is most prevalent in its Moore
neighborhood onlv if the maioritv is strong (ma 6, see

TOTALISTIC CELLULAR AUTOMATA 183

Eq. (1)), or in case of a marginal minority (m = 4). In terms
of Eq. (2) the rule is defined as

rk= 1 if k = 4, 6, 7, 8, 9

rk = 0 otherwise.

The twist in the majority provides a kind of frustration that
simulates a mobile interface according to the Allen-Cahn
equation.

Rule (19) can be coded with the general algorithm
described in Section 2, building the R, of Eq. (4) and then
using the expression for the mk of Table I and of Eqs. (1 1),
(12), and (13). Of course, for this given rule, one can further
reduce the number of required operations using ad hoc
tricks; in the case of rule (19) we were able to derive an
expression containing 42 operations.

The full power of the algorithm is developed when
applied to probabilistic cellular automata.

Let us first discuss as a simple example the application of
the method to a parallel Monte-Carlo simulation of an Ising
model with nearest and next-to-nearest neighbors equal
interactions and zero magnetic field. The Hamiltonian Y? is

X==-Jqi c ‘13 1
> I

-Oji 3

i, i l=j-l,j,j+l
k-i-l,i,i+l

where a,,, = +l and J> 0 is a ferromagnetic coupling.
Passing to Boolean variables (aj,, = 2x,, - 1), the local
energy H is given by

H(c, h)= -2J(2c- 1)(/r-4),

where c = xj,i is the state of a generic site and h is defined as
in Eq. (1).

The variation of the local energy with the flip of c is

dH(c,h)=H(c,h)-H(c,h)= f4J(h-4),

where the minus (plus) sign holds for the transition of c
from 0 (1) to l(0).

We can now define the coefticient r,, ,, of Eq. (3) so that
the transition probabilities satisfy detailed balance,

1 if AHGO,

rc,h = AH
exp-= if AH>O.

The random masks are built as described in Section 4. The
number of required random masks can be reduced in this

case observing that AH is always an integer multiple of 4J,
so that the rr,h are integer powers of p = exp -4J/kT.
A word A whose bits are one with probability p* can
be obtained from two independent random words B and C
whose bits are one with probability p just performing a
bitwise AND among them: A = B A C.

The implementation of a parallel version of the
Metropolis Monte-Carlo sampling technique must be very
cautious, as the full parallelism can lead the system towards
a maximum of the energy, as discussed in Ref. [7]. A
detailed discussion of the simulations of the Ising model
with cellular automata can be found in Ref. [161. The same
scheme can be used to simulate Ising models in spaces of
higher dimensions, for instance in three dimensions with
nearest neighbors interactions (six neighbors).

The storage scheme described in Section 3 and the intro-
duction of probabilistic evolution rules of Section 4 can be
also applied to non-totalistic cellular automata such as
lattice gas models [17]. For example, to model diffusion
as suggested in [lS], one needs a 4-bit per site cellular
automaton. To this aim let us consider four Boolean cellular
automata lattices stacked one over the other. We refer to
the four lattices (planes) as UP(subscriptf), LEFT(c),
DO WN(J), and RIGHT(-+). If, for instance, at site (j, i) the
bit xt is set to one, it means that there is a particle travelling
from site (j, i) to (j- 1, i). Diffusion is controlled by two
parameters p and q, which give the probability of a common
counter-clockwise rotation of all the particles in a generic
site according to the scheme of Table VI. The random
masks P, and Q, are built according to the parameters p
and q.

The evolution rule for a word C, that contains Nb sites of
the UP plane is

-
C;=Q,A&Y f$Ve,AP,A W,vQ,

AEAE,vQ~AP,AN,,

where N, W, S, E denote the words that contain the nearest
neighbors of the spins in C. The expressions for the other

TABLE VI

Counter-clockwise rotations of the velocities of the particles in a
site for a probabilistic lattice gas, according to the parameters p, q

P 4 Rotation

0 0 0

0 1 -

1 1 n

184 BAGNOLI, RECHTMAN, AND RUFFO

planes are obtained by performing a cyclic permutation of
the t, c, 1, + and S, E, N, W symbols.

REFERENCES

1. S. Wolfram (Ed.), Theory and Applications of Cellular Automata,

7. CONCLUSIONS

A general algorithm for totalistic and outer totalistic
cellular automata using MSC has been developed that
allows significant reduction in execution times with respect
to the canonical form. We have concentrated our efforts
mainly in simplifying the rule, disregarding the problem of
vectorization and of special implementations on parallel
machines. A complementary approach dealing with these
problems may be found in Ref. [13]. In general, the main
drawback of MSC is the serialization needed to perform
calculations; on the other hand, a great advantage is the
efficient use of the memory. Our algorithm is applicable to
any totalistic rule and may still be improved in specific
applications. We have also discussed the problem of optimal
storage of the configuration in the computer memory and
the extension of the results to stochastic models. These last
topics can be also applied to non-totalistic automata in any
dimension. Finally, examples of physical applications are
given. We have shown how to apply the algorithm to a
deterministic totalistic rule that simulates interface motion
between two fluids, to a Metropolis Monte-Carlo Ising
model (a probabilistic outer totalistic rule), and to a
stochastic lattice gas.

Note added in proof: One of the authors (F.B) has further developed the
algorithm presented here in “Boolean derivatives and computation of
cellular automata,” Int. J. Mod. Phys. C, in press.

ACKNOWLEDGMENTS

The ideas we have presented have profited from useful discussions with
R. Livi and A. Salcido. We also thank G. Vichniac for reading the
manuscript and for suggesting to us the equivalence totalistic/symmetric of
Ref. [3]. This work was partially done during reciprocal visits to Florence
and Mexico City partially sponsored by the CNR of Italy and the
CONACYT of Mexico.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

(World Scientitic, Singapore, 1986); and Physica 10D (1984).

N. Packard and S. Wolfram, J. Stat. Phys. 38, 901 (1985); also
reprinted in [11.

This theorem is due to Shannon, see e.g., R. E. Miller, Switching
Theory, Vol. I (Wiley, New York, 1966) p. 103.

M. Gardner, Sci. Am. 223, 120 (1970); Sci. Am. 223, 116 (1970); Sci.
Am. 224, 104 (1971); Sci. Am. 224, 112 (1971); Sci. Am. 224, 114
(1971); Sci. Am. 226, 104 (1972); and in Life, Wheels and Other
Mathematical Amusements, edited by M. Gardner (W. H. Freeman,
New York, 1983).

G. Vichniac, in Chaos and Complexity, edited by R. Livi, S. Ruffo,
S. Ciliberto, and M. Buiatti (World Scientific, Singapore, 1988).

N. Packard, in Proceedings of the First International Symposium for
Science on Form, edited by Y. Katoh et a/. (KTK Scientific Publisher,
1986); also reprinted in [l].

G. Vichniac, Physica lOD, 96 (1984).

Y. Pomeau, J. Phys. A 17, L415 (1984).

R. Zorn, H. J. Herrmann, and C. Rebbi, Comput. Phys. Commun. 23,
337 (1987); C. Kalle and V. Winkelman, J. Stat. Phys. 28, 639 (1982);
S. Wansleben, J. G. Zabolitzky, and C. Kalle, J. Stat. Phys. 37, 271
(1984).

H. J. Herrmann, J. Stat. Phys. 37, 271 (1984); J. G. Zabolitzky and
H. J. Herrmann, J. Camp. Phys. 76,426 (1988).

S. Yablonski, Introduction aux MathPmatiques Discretes (MIR,
Moscow, 1983).

F. Wegener, The Complexity of Boolean Functions (Wiley, New York,
1987).

J. Myczkowski and G. Vichniac, “Parallel Programming for Cellular
Automata,” AICA Workshop on Parallel Programming, CINECA,
Bologna, Oct. 1989 (unpublished).

L. S. Schulman and P. E. Seiden, J. Stat. Phys. 19, 293 (1978).

F. Bagnoli, R. Rechtman and S. Ruffo, Physica A 171, 249 (1991).

0. Parodi and H. Ottavi, in Cellular Automata and Modeling of Com-
plex Physical Sistems, Proceedings of the Winter School, Les Houches,
France, 1989, edited by P. Manneville, N. Boccara, G. Y. Vichniac, and
R. Bideaux (Springer-Verlag, Berlin 1989), p. 82.

Gary D. Doolen (Ed.), Lattice Gas Methodes for PDE’s, Physica 47D,
1991.

B. Chopard and M. Droz, in Cellular Automata and Modeling of
Complex Physical Systems, Proceedings of the Winter School, Les
Houches, France, 1989, edited by P. Manneville, N. Boccara, G. Y.
Vichniac and R. Bideaux (Springer-Verlag, Berlin, 1989) p. 130.

