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Multi-site coding techniques allow fast simulations of cellular 
automata that are economical in the use of memory. In these techniques 
the transition rule must be expressed using only bitwise operations. We 
present an algorithm for the simulation of generic totalistic and outer 
totalistic cellular automata which uses a multi-site coding technique. 
The algorithm is based on the careful use of (a) improvements over 
the canonical forms by using the exclusive-or operation, (b) optimal 
storage of the configuration in the computer memory, and 
(c) appropriate construction of stochastic rules. Items (b) and (c) of 
the method can be also applied to non-totalistic automata in any 
dimension. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

The study of cellular automata behavior, both of deter- 
ministic and probabilistic ones, is a subject of great interest 
nowadays [ 11. Cellular automata are dynamical systems in 
which time, space, and dynamical variables are discrete. The 
space is a (regular) lattice, and each site (cell) takes a value 
in a discrete set. In this paper we restrict this set to (0, 1 }, 
i.e., we consider only Boolean cellular automata. All the 
cells in the system evolve synchronously according to an 
uniform short-ranged law. The law gives the future state of 
a cell according to the present state of the cells belonging to 
a certain neighborhood. In a square lattice a widely used 
neighborhood is formed by the cell itself, the four nearest- 
neighbor ones, and the four next-to-nearest ones. This is 
often called the Moore neighborhood. It can also be divided 
into an outer neighborhood, formed by the eight cells 
surrounding the central one, and the cell itself. 

Among the various automata, totalistic ones seem to 
represent a subset of limited extension (in two dimensions 
and with a Moore neighborhood there are 512 different 
totalistic rules with respect to 2512 general rules) that retains 
the complexity of the whole set [2]. The transition rule for 
totalistic cellular automata depends only on the sum of the 
cell values in the neighborhood. The class of totalistic rules 
is equivalent to that of the rules symmetric in all the 
arguments [3]. The transition rule for outer totalistic 
cellular automata depends separately on the value of the cell 
itself and on the sum of those in the neighborhood. 
Examples of such rules are Conway’s Game of Life [4], 
biased majority rules that simulate interface motions [S], 
solidifications and aggregations models [6], and Ising 
dynamics [7, 8, lo]. 

In studying the statistical properties of these automata, 
long simulations of large arrays are often needed, requiring 
both powerful computers and big memory storage. The 
Multi-Site Coding technique (MSC) allows a gain in 
memory requirements and in execution speed [9, lo]. The 
main idea of MSC is to pack several variables into a single 
memory word of the computer (a word can hold from 16 to 
64 bits, depending on the machine) and to elaborate their 
future value as a whole. In such a way a certain degree of 
parallelism can be achieved even on a serial computer. The 
drawback of this technique is how to implement a generic 
transition rule. 

Storing a cell value into a single word allows its easy 
manipulation and the description of the rule with high-level 
language, such as: if the sum of the neighbors is three, then... . 
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Alternatively the cells values can be combined and used as 
an address in a precompiled look-up table. On the other 
hand MSC is fully exploited if the transition rule is 
expressed by means of operations acting over the packed 
variables as a whole. This can be achieved using the bitwise 
operations NOT, AND, OR, and exclusive OR (XOR). The 
starting point is the canonical disjunctive form built directly 
from the truth table [ 111. The canonical form for totalistic 
cellular automata contains a great number of operations. 
The reduction of this form to a minimal one (in the sense of 
the number of operations required) is not an easy task. In 
fact the problem of finding the minimal form is believed to 
be a NP one [ 121. 

In this paper we discuss several aspects related to the 
simulation of cellular automata using the MSC technique. 
In Section 2 we present an algorithm that allows us to 
construct a generic two-dimensional totalistic and outer 
totalistic Boolean cellular automaton rule. The Boolean 
expressions obtained in this way improve significantly the 
canonical form. In Section 3 we discuss the problem of 
optimal storage of the configuration in the computer 
memory. The technique there exposed can be also applied to 
non-totalistic and non-Boolean cellular automata in any 
dimension. Section 4 briefly discusses the extension of the 
method to probabilistic rules; once more the results can be 
applied to the simulation of a generic stochastic cellular 
automaton. The subsequent section presents benchmarks 
among various implementations of the code and one 
application to the Game of Life. Section 6 presents some 
applications of these methods to physics, and the final 
section contains some conclusions. 

2. THE ALGORITHM 

In the following xj,i indicates the spin (cell value) at the 
site located at row j and column i in a square 2D lattice. 
Spins can take the values 0 and 1, so each site variable can 
be stored in a bit. Memory words are indicated with upper- 
case letters, as W, and arrays of words by W,,. All the array 
indices start from 0. The bits in a word are indicated with 
lowercase letters, thus 

where Nb is the number of bits in a word (16, 32, or 64). 
Note that the order of the bits in a word is that required to 
read them as a number in base 2 in the standard left to right 
way. 

The number of required words to store a row of the 
configuration is denoted by NW and the number of sites in 
a row by Ns. Then 

Ns=Nb.Nw; 

the number of rows required is indicated by Nr. 

(2) 

Given a site and its Moore neighborhood, the spin of the 
center is usually denoted by c and the spins of the neighbors 
by nw, n, ne, w, e, SW, s, se. The notation recalls north, west, 
east, and south directions. In the previous notation c is x~,~, 
nw is XI-1 ,-i, etc. Following Vichniac’s notation [7], we 
write 

h=nw+n+ne+w+e+sw+s+se 

m=h+c. 
(1) 

Any totalistic evolution rule can be written as 

9 

c’(m) = C rk ’ mk 
k=O 

and any outer totalistic rule as 

c’(h,c)= i hk.[~.rl,k+(l-~).rO,k]. 
k=O 

(3) 

In these expressions c’ is the updated value of the central 
site, mk is 1 if m = k and 0 otherwise and similarly for h,, 
with m and h given by (1). Thus only one term contributes 
in the sums of Eqs. (2) and (3). The quantities rk and rC,k, 
(c = 0, 1) take the value 0 or 1 and define the automaton 
rule. 

As mentioned earlier it is advantageous to use MSC. In 
order to perform operations on all the bits in a word at once 
we need to use only bitwise operations. In the following we 
use the upper bar for the bit by bit negation, and the 0, A, 
and V symbols, respectively, for the bitwise XOR, AND, 
and OR operations. Let C denote a word that contains Nb 
spin variables. For the moment it is not important what the 
correspondence among the spins in C and the sites in the 
lattice is, as long as it is one-to-one. With the neighbors nw, 
n, ne, w, e, SW, s, se of each site stored in C, the neighbors 
words NW, N, NE, W, E, SW, S, SE can be constructed. 
Then, any totalistic rule may be written using MSC as 

C’= t R, t\ M,, 
k=O 

(4) 

and any outer totalistic rule as 

c’= 0 H,A [CARl,k V c A &,,I, (5) 
kc0 

where R, and R,, are words whose bits are all equal to rk 
and rr,ky respectively. The words Mk and Hk contain in the 
ith bit (i= 0, . . . . Nb- 1) the values of mk and h, for the 
neighborhood of the ith site packed in the word C. 



178 BAGNOLI, RECHTMAN, AND RUFFO 

The problem is now reduced to that of contructing the 
quantities mk and h, using only Boolean operations out of 
the spin c of the central site and of the spins IZW, . . . . se of the 
neighbors. Then, as mentioned above, the same Boolean 
expression may be applied in a bitwise fashion to 
C, NW, . . . . SE. In what follows these expressions are con- 
structed explicitly for totalistic rules and they are reported 
in table I; the case of outer totalistic rules is similar, and the 
corresponding expressions are summarized in Table II. 

To simplify the notations let y,, y,, . . . . ys denote the 
spins c, nw, . . . . se. If in a certain configuration (yO, y,, . . . . y,) 

negations of all the spins will yield expressions for the other 
mk with k = 4, . . . . 0. As an example, m, takes the value 1 
only if all the spins are 1, while m, is 1 only if all the spins 
are 0. Then 

8 
m9= A yi (6) 

i=O 

mo= i Y,. 
i=O 

For k = 8 we have 

(7) 

the sum of the spins is m, the sum of the negations of the 
spins will be 9 - m. This means that if expressions are found 
for mkr k = 5, . . . . 9, then the same formulas applied to the 

m8 = v E A yl A y2 A y3 A y4 A y5 A y6 A y7 A y8, 
cyclic 

63) 

m 

TABLE I 

Equivalent Configurations and Characteristic Functions for Totalistic Neighborhood 

Independent conf. Code Characteristic function 

9 
8 
I 

111111111 511 Yo A YI A Y2 A Y, A Y, A Ys A Ye A Y, A Ys* 
011111111 255 (Yo@Y,) A Y2 * Y, * Y, A Ys A Y, A YT A Ys 
001111111 127 
010111111 191 
011011111 223 (Yo$Y,)A(Y~OY~)~Y~AYSAY~AY~~ Ys 
011101111 239 (Yo~Y,)~Y~~(Y~~Y~)*YsAY~~ Y7’,‘Y8 

Total (107/395): (Yo@Y,) A [(Y2@Y3) A Y4 ”  Y2 A (.h@Y4)lA Y, A Ye A Y7 A YS 

6 001011111 95 
001101111 111 
001111101 125 
001111011 123 
010101111 175 
010110111 183 
010111011 187 (Yo~Y,)A(Y~~Y~)~(Y~~Ys)AY~*Y~~Y~ 
001110111 119 
000111111 63 (Yo~Y,)~(Y~~Y~)~(Y~~Ys)~Y~~Y~*YS 
011011011 219 (YOQY,) A Y2 A (Y3QY4) A (YsQYd A Y7 A Ya 

Total(161/1007): (Yo@Y,) A {[(Y2@Y3) A (Y4@Ys)" (Yz@Y~)A(Y~@Ys)~” Y6” Y2 A(Y3QY.t) A (Ys@Y6)} A Y7 A Y8 

5 001010111 87 
001011011 91 
001011101 93 
001100111 103 
001101011 107 
001101101 109 
001110101 117 
010101011 171 
001001111 79 
000011111 31 
000101111 47 
ooo110111 55 
000111011 59 
000111101 61 (Y,QY,)~(Y~QY~)A(Y~QY~)~(Y~QY~)*Ys 

Total (170/1637): (Yo@Y,) A {(Y2@Y3) * [(Y4@Y5) A (Y6@Y7) ” (Y,@YL) A (Ys@Y,)l ” (Yz@Y,) A (Yj@Y,) A (Y4@Y7)) A Y8 

Note. The (*) at the end of the characteristic function for m = 9 means that the sum (OR) over all the cyclic translations is unnecessary. Total expres- 
sions are not reported for m = 9 and m = 8, where only one characteristic function is present. The numbers in brackets beside the total expressions are 
the required operations with respect to the canonical form. 
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where the OR operation is taken over the possible nine 
cyclic translations of the indices of the spins y,, y,, . . . . y8. 
Each term in the sum contains only one negated spin. 
Expression (8) may be rewritten as 

m8= v (yO@yl) * Y2 * Y3 A Y4 A YS A Y6 A Y7 A Y8? 
cyclic 

(9) 

where @ denotes the exclusive OR( XOR) operation. There 
is some redundancy in the last espression, as a@ b = 
L5 A b v a A 6, so that each term in the sum already contains 
part of the subsequent term, but this saves one computer 
operation per term. 

The configurations with seven spin variables equal to 1 
fall into four classes. The elements of each class are equiva- 
lent under cyclic translations. Each class may be identified 
by the configuration that has the minimum code when read 
as a binary number. The equivalence classes and their code 
are shown in Table I. In this case the expression 

(YO@Y,) A (h@Y3) A Y4 * YS * Y6 A Y7 A Y8 

is equal to 1 for the classes denoted by 127, 191, and 223 
(eventually after a cyclic translation). The class 239 can be 
represented by 

(YO@Y,) A Y2 * (Y30y4) A YS A Y6 A Y7 A Y8. 

Then 

m7= V (Y,@Y,) A C(Y,@Y~) * y4 v y2 A (Y~OY,)I 
cyclic 

A YS * Y6 * Y7 A Y8. (10) 

This expression contains a total of 107 Boolean opera- 
tions, compared to the canonical form that contains 395. 
These numbers are also reported in Table I. 

The expressions for m6 and m5 are obtained in a similar 
way and are shown in Table I. The efficiency of the algo- 
rithm increases with the number of configurations involved. 
The expressions for m6 contain 161 operations in com- 
parison to the canonical form that contains 1007. For m5 

the numbers are 170 and 1637, respectively. In order to 

TABLE II 

Equivalent Configurations and Characteristic Functions for Outer Totalistic Neighborhood 

h Independent conf. Code Characteristic function 

5 

4 00101011 43 
00101101 45 
00110011 51 
00110101 53 
01010101 85 (YO@Yl) h (Y2@Y3) A (Y4@Y5) A (Y6@Y7) 

00100111 39 (YO@Y,) h (YZ@h) * (Y4@Y6) h bS@Y7) 

ooo01111 15 
00010111 23 
00011011 21 
00011101 29 (YO@Yl) A (Y2@Ys) A (Ys@Y,) A (Y4Q3Y7) 

Tota1(13WW (Yo@Yd * {(Yz@Yd A [(Y4cDYs) * (Y6@Y7) v (y4@y6) * (ys@Y7)1 v (YZ@YS) A (Y~@Y~) A (y4@Yy7)1 

8 
I 
6 

11111111 255 Yo A Yl A Y2 A Y3 A Y‘l A Ys A Y6 A Y7* 
01111111 127 (Yo@Yd * Y2 * Y3 A Y4 A Ys * Y6 A Y7 

00111111 63 
01011111 9s 
01101111 111 (YOCDY,) * (Y28YJ * Y4 A Y5 A Y6 A Y7 
01110111 119 (Yo 8 Y,) A Y2 A (Y3 @ Y4) * Ys A Y67Y7 

Total W/W: (Y,@Y~) A C(Y~CBY~) A Y, v y2 A (~~8.~~11 A YS A y6 A ~7 

00101111 47 
00110111 55 
00111011 59 
00111101 61 
01010111 87 
01011011 91 (YO@YI) h (Y2@Y3) * (Y4@Y5) A Y6 A Y7 

00011111 31 (YO@Yl) A (Y20Y4) A (h@Y,) A Y6 h Y7 

Total (96/615): (yO@h) A [(Y2@Y3) A (Y4@Ydv (YZ@Y4) * (h@Y5)l A Y6 A Y7 

Note. The (*) at the end of the characteristic function for h = 8 means that the sum (OR) over all the cyclic translations is unnecessary. As in Table I 
total expressions for h = 8 and h = 7 are not reported. The numbers in brackets beside the total expressions are the required operations with respect to 
the canonical form. 
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achieve the maximum execution speed, the sum over the 
cyclic translations in the expressions reported in Table I 
should be explicitly developed. 

In a general algorithm all the quantities M, have to be 
generated, as the selection of the rule is performed by the 
Rk. It is possible to save the task of generating WL, and m5 
using the parity p of the sum m, given by 

P=Y,oY,oY,oY,oY,oY,oY,oY,oY,; (11) 

p is 0( 1) if m is even (odd). Obviously 

p=m,vm,vm,vm,vm,, 

and since 

mi h mj=O if i#j, 

we get 

m,=pAm,vm,vm,vm,. (12) 

The expression for m4 may be obtained from the 
condition 

i) m,=pvji=l; 
k=O 

then 

m4=ji~mm,vm,vm,vm,. (13) 

The expressions ( 1 1 ), (12), and (13) imply only 19 opera- 
tions, with respect to the 3274 of the canonical form and of 
the 340 of the reduced form of Table I. In the actual writing 
of the algorithm in a computer code one can further reduce 
the number of operations by taking into account the 
presence of common patterns in the expressions in Tables I 
and II and observing that a @ b = a 0 6. In total the number 
of operations required to implement a generic totalistic 
automaton is about 600 bitwise operations per word. 

Reasoning in a similar fashion, one may find compact 
expressions for outer totalistic cellular automata. These are 
presented in Table II. 

3. IMPLEMENTING THE ALGORITHM 

The full power of the algorithm is developed when applied 
to full words. There are several ways in which one may assign 
thespinsofthesitesxj,i(j=O ,..., Nr-1;i = 0, . . . . Ns - 1) 
in the lattice to the words X,,(k = 0, . . . . NW - 1); however, 
the task of building the neighborhood of the sites stored in 
the word C= X,, must be as economical as possible. The 
final goal is to have the values of the cells belonging to the 

neighborhood of a cell stored in a certain position of the 
word C in the corresponding bits of the words NW, . . . . SE. 
This can be obtained without any shift operations by 
assigning the first spin in a row to the first bit of the first 
word, the second spin to the first bit of the second word, and 
so on for the first NW spins. The previous operation is 
repeated Nb times in order to store the first NW spins in the 
first bits of the words containing the row, the following NW 
spins in the second bits of the words, and so on. For a 
generic row j we have 

xj,O= IX,,(N~-IJ.N~,Y ...> Xj,2.Nw, Xj,Nnz> xi.01 

Xj,1=IXj,(Nb--l).Nw+l,...rXj,2-Nw+l,X,,~w+~,X,,II 

(14) . . . 

xj,Nw- 1 =IXj,Nb.Nw--L,...,Xj,~.Nw--lrXj,2.N~~-l,Xj,Nwl~ 

For NW> 3 and apart from boundary conditions, the 
spins of the neighbors of the sites in X,, are stored in the 
corresponding bits of the words 

In order to implement periodic boundary conditions on 
the horizontal border, all the operations on the index j are to 
be considered modulus the number of the rows Nr. Vertical 
periodic boundary conditions are imposed by observing 
that the west neighbors of the sites in the first word Xj,,o are 
contained in the last word X, Nw _ I circularly shifted one bit 
to the left, and the east neighbors of the spins in X,, Nw ~ 1 are 
in X,, circularly shifted one bit to the right. This storage 
scheme can be used in any dimension and even for 
non-Boolean automata such as lattice gases (see Section 6); 
with a few modifications it can also be adapted to larger 
neighborhoods. 

4. PROBABILISTIC TOTALISTIC CELLULAR AUTOMATA 

Probabilistic cellular automata may be implemented by 
allowing real values between 0 and 1 for the coefficients rk 
of Eq. (2) and interpreting c’ as the probability that the spin 
of the central site assumes the value 1 at the next time step. 
Then rk is the probability that this spin is 1 if m is equal to k. 

These probabilistic concepts may be introduced in 
the bitwise evolution rule (4) filling the bit masks R, with 
bits having the value 1 with probability rk. A large number 
Nm of samples of the words R,,, is constructed with 
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x = 0, . . . . Nm - 1. Then, given a random number x between 
0 and Nm - 1, the evolution rule for the sites in a word C is 
given by 

C’= 0 R,,, A M,. (16) 
k=O 

In practice it is possible to reduce the number Nm of the 
independent random masks by performing a random cir- 
cular shift over Rk,+ before introducing it in Eq. (16). The 
same arguments apply to outer totalistic cellular automata. 
Once again, the use of random masks can easily be adapted 
to other evolution rules. An advantage in using predefined 
random masks is that the probability can be fixed with a 
great precision, and correlations are further depressed by 
shuffling the random masks. 

5. PERFORMANCES 

In order to obtain an accurate estimate of the time 
required per site update, we propose an approximate 
expression for the running time T of a program, 

T=t,+ti.L+t,.L.N”, (17) 

where L is the number of lattice sites, N, is the number of 
global updates of the lattice, and t,, ti, t, are constants: t, 
represents the loading time, which could also involve the 
compilation time; t, is the time requested to initialize the 
lattice and t, is the update time per site. The time needed to 
implement the periodic boundary conditions is not con- 
sidered, but the linearity of the law with respect to L with 
fixed N, has been tested for lattice sizes ranging from 
64 x 64 to 512 x 5 12 sites, over a variety of machines. The 
quantity used to compare the performances of the various 
implementations is the number v of sites updated in a 
second, and it is obtained by 

v= (18) 

where AN, and At represent the differences in lattice 
updates and in running time of two samples of the same 
program on the same machine for different N,‘s. The 
angular brackets represent the average over different 
samples. 

The computers used for the benchmarks were an 
IBM PS/2 80 with a clock speed of 16 MHz (using DOS 
operating system the words are 16 bits long); a SUN 3861‘ 
workstation at 25 MHz, a VAX 3580 (32 bits per word), an 
HP 9000/840 (32 bits per word), and a CRAY I XMP (64 
bits per word). All the programs were written in a high-level 
language and in a clear style with many calls to subroutines 

and no dirty tricks. Vectorialization on the CRAY was 
explicitly avoided, since we were interested in testing the 
gain obtained with the reduced rule on different machines. 
The central loop containing the sum (OR) over the eight 
cyclic translations of the indices was not explicitly 
developed, and the variables x0, x1, . . . . xg were translated 
by explicit assignment (temp =x0, x0 = x1, . . . . xs = temp). 

In order to show the advantage represented by using the 
algorithm described above with respect to the canonical 
form, eight different programs were written using the C 
language and run on the HP computer (Table III). The 
table shows the differences in the number of spins updated 
in a second, between the canonical expressions and our 
algorithm in constructing all the quantities mk and hk. The 
performances are reported for inline code and for a 
structured call to a subroutine. Our algorithm is about 
three times faster than the canonical form, depending on the 
complexity of the calculation. 

The algorithm may be applied to many interesting 
models. The efficiency is discussed briefly in two cases: 
Conway’s Game of Life [2], which is a classical testing 
ground, and a general probabilistic outer totalistic rule. For 
outer totalistic rules, and in particular for the Game of Life, 
we should expect smaller improvements with respect to the 
canonical form due to the simplicity of the rule (see 
Table II). When not explicitly indicated, the following 
programs were written in FORTRAN 77. 

The Game of Life is a two-dimensional outer totalistic 
cellular automaton whose evolution rule is given by 

c’= 1 

i 

I if c=Oandh=3, 
if c=landh=2or3, (18) 

0 otherwise, 

where h is the sum of the neighbors of the central cell xi, j as 
defined in (1). It should be noted from expression (18) that 
only m2 and m3 are required in order to calculate c’. 

We wrote three different programs: 

1. High-level, a traditional code with one spin per word 
and the rule implemented with if... then... statements; 

TABLE III 

Number v of sites updated in a second in kHz (formula (18)) for 
the construction of mk (totalistic) and hk (outer totalistic) using C 
language on a HP 9000/840 computer 

Program 

Canonical 
Reduced 

Totalistic Outer totalistic 

Subroutine Inline Subroutine Inline 

83.0 172.0 177.8 338.6 
301.6 441.8 447.1 659.5 
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TABLE IV 

Number Y of sites updated in a second in kHz (formula (18)) 
for the Game of Life 

Computer High-level Canonical Reduced 

PS z/so 18.9 3.5 22.5 
SUN 3861’ 32.8 50.4 174.5 
VAX 8350 54.9 117.8 217.2 

HP 9000/840 101.9 175.1 585.1 
CRAY I XMP 391.3 3034.1 4551.1 

2. Canonical, using MSC and the rule implemented via 
the canonical disjunctive form; 

3. Reduced, using MSC and the compact expressions 
reported in Table II. 

The values of v obtained running the three different 
programs are reported in Table IV. The reduced program 
always runs faster than the other two. We observe that when 
the number of bits per word is small, as in the case of the 
PS/2, the use of MSC does not necessarily imply better 
performances. For computers with more bits per word the 
gain of MSC increases, but still one gets significant 
improvements using our algorithm. 

Finally, we implemented a code for the simulation of a 
general outer totalistic probabilistic rule. The results for v 
are reported in Table V. The gain with respect to the 
high-level program is less than above (apart the results 
for the HP computer), even if with MSC only one random 
number has to be extracted for every Nb spins. This is due 
to the larger number of operations needed to generate all 
the M, in (5) with respect to the Game of Life. 

In order to evaluate the influence of the language used, a 
program that implements a general outer totalistic 
probabilistic rule was written in C language for the HP 
computer. The update rate obtained was 257.2 kHz, which 
is nearly 1.5 times the speed of the corresponding 
FORTRAN program. This result cannot be generalized, but 
it shows that several factors should contribute in order to 
achieve the best performances. 

A preliminary study of probabilistic mixtures of totalistic 
automata has been undertaken. An example is the mixture 

TABLE V 

Number v of sites updated in a second in kHz (formula (18)) 
for a general probabilistic outer totalistic rule 

Computer High-level Reduced 

PS 2/80 9.1 9.5 
SUN 3861’ 16.6 73.1 

VAX 8350 41.4 93.1 
HP 9000/840 15.2 176.17 

CRAY I XMP 261.2 2239.3 

dca 
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0 0.1 ( 
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FIG. 1. Asymptotic density d, of live cells for a random mixture of the 
Game of Life and its conjugation with probability E varying from 0 to 1 step 
0.02. We plot the result of computer simulations (diamonds) and of mean 
field approximation [ 141 (continous line). At E = 0, which corresponds to 
the Game of Life, the asymptotic density is d, = 0.028. 

of the Game of Life with its conjugate that assumes the 
value 0( 1 ), whereas the Game of Life takes the value l(0). 
At any site the Life rule is applied with probability E and its 
conjugate with probability 1 - E (0 < E < l), as described in 
Section 4. In Fig. 1 the asymptotic density of live sites (ratio 
of sites having spin equal to 1 to the total number of sites) 
is shown as a function of E, together with a mean field 
approximation [ 141. These simulations were carried out on 
a 256 x 256 lattice. The graph shows 50 points, each being 
the average over 10 simulations performed on the SUN 3861’ 
with a program written in C. The total CPU time was 
roughly 36 h. The update speed was 161.6 kHz, which is 
smaller than the value reported in Table IV due to the 
loading time, the initialization time, and the (relatively 
small) slowing down due to the calculation of the density 
every 100 updates performed to monitor the relaxation of 
the lattice. The algorithm here described was also used to 
study the relaxation and the critical properties of the Game 
of Life in Ref. [15]. 

6. SOME PHYSICAL APPLICATIONS 

As a first physical example let us consider the simple 
model of interface motion developed in Ref. [S], based on 
a marginal majority deterministic rule. The central site c 
assumes the value that is most prevalent in its Moore 
neighborhood onlv if the maioritv is strong (ma 6, see 
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Eq. ( 1 )), or in case of a marginal minority (m = 4). In terms 
of Eq. (2) the rule is defined as 

rk= 1 if k = 4, 6, 7, 8, 9 

rk = 0 otherwise. 

The twist in the majority provides a kind of frustration that 
simulates a mobile interface according to the Allen-Cahn 
equation. 

Rule (19) can be coded with the general algorithm 
described in Section 2, building the R, of Eq. (4) and then 
using the expression for the mk of Table I and of Eqs. (1 1 ), 
(12), and (13). Of course, for this given rule, one can further 
reduce the number of required operations using ad hoc 
tricks; in the case of rule (19) we were able to derive an 
expression containing 42 operations. 

The full power of the algorithm is developed when 
applied to probabilistic cellular automata. 

Let us first discuss as a simple example the application of 
the method to a parallel Monte-Carlo simulation of an Ising 
model with nearest and next-to-nearest neighbors equal 
interactions and zero magnetic field. The Hamiltonian Y? is 

X==-Jqi c ‘13 1 
> I 

-Oji 3  

i, i l=j-l,j,j+l 
k-i-l,i,i+l 

where a,,, = +l and J> 0 is a ferromagnetic coupling. 
Passing to Boolean variables (aj,, = 2x,, - 1 ), the local 
energy H is given by 

H(c, h)= -2J(2c- 1)(/r-4), 

where c = xj,i is the state of a generic site and h is defined as 
in Eq. (1). 

The variation of the local energy with the flip of c is 

dH(c,h)=H(c,h)-H(c,h)= f4J(h-4), 

where the minus (plus) sign holds for the transition of c 
from 0 (1) to l(0). 

We can now define the coefticient r,, ,, of Eq. (3) so that 
the transition probabilities satisfy detailed balance, 

1 if AHGO, 

rc,h = AH 
exp-= if AH>O. 

The random masks are built as described in Section 4. The 
number of required random masks can be reduced in this 

case observing that AH is always an integer multiple of 4J, 
so that the rr,h are integer powers of p = exp -4J/kT. 
A word A whose bits are one with probability p* can 
be obtained from two independent random words B and C 
whose bits are one with probability p just performing a 
bitwise AND among them: A = B A C. 

The implementation of a parallel version of the 
Metropolis Monte-Carlo sampling technique must be very 
cautious, as the full parallelism can lead the system towards 
a maximum of the energy, as discussed in Ref. [7]. A 
detailed discussion of the simulations of the Ising model 
with cellular automata can be found in Ref. [ 161. The same 
scheme can be used to simulate Ising models in spaces of 
higher dimensions, for instance in three dimensions with 
nearest neighbors interactions (six neighbors). 

The storage scheme described in Section 3 and the intro- 
duction of probabilistic evolution rules of Section 4 can be 
also applied to non-totalistic cellular automata such as 
lattice gas models [17]. For example, to model diffusion 
as suggested in [lS], one needs a 4-bit per site cellular 
automaton. To this aim let us consider four Boolean cellular 
automata lattices stacked one over the other. We refer to 
the four lattices (planes) as UP(subscriptf), LEFT(c), 
DO WN( J), and RIGHT( -+ ). If, for instance, at site (j, i) the 
bit xt is set to one, it means that there is a particle travelling 
from site (j, i) to (j- 1, i). Diffusion is controlled by two 
parameters p and q, which give the probability of a common 
counter-clockwise rotation of all the particles in a generic 
site according to the scheme of Table VI. The random 
masks P, and Q, are built according to the parameters p 
and q. 

The evolution rule for a word C, that contains Nb sites of 
the UP plane is 

- 
C;=Q,A&Y f$Ve,AP,A W,vQ, 

AEAE,vQ~AP,AN,, 

where N, W, S, E denote the words that contain the nearest 
neighbors of the spins in C. The expressions for the other 

TABLE VI 

Counter-clockwise rotations of the velocities of the particles in a 
site for a probabilistic lattice gas, according to the parameters p, q 

P 4 Rotation 

0 0 0 

0 1 - 

1 1 n 
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planes are obtained by performing a cyclic permutation of 
the t, c, 1, + and S, E, N, W symbols. 
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